Monday, 17 July 2017

LOGARITHMS 22


If logx 2401 – log3729 = -4; find x

solution

logx 2401 – log3729 = -2

logx 2401 – log336 = -2

logx 2401 – 6log33 = -2

logx 2401 – 6 x 1 = -2

logx 2401 – 6 = -2

logx 2401 = -2 + 6

logx 2401 = 4 

2401 = x4        2401=7x7x7x7=74 by prime factors

74 = x4      Powers cancel out

x = 7


Hence x = 7.

TRY THIS………….


If logm2048 – log6216 = 8; find m

EXPONENTIALS 10


Simplify 44
               8-2/3

Solution

44
    8-2/3

= 44 x 1
           8-2/3

=  44 x 82/3        [Since 1/a-n = an]

=  44 x (81/3)2        [Since 81/3 = cube root of 8 = 2]

=  44 x (2)2        

=  44 x 4

= 176       
          
Hence   44        = 176
             8-2/3


TRY THIS…..  

simplify 20
             125-2/3



ARITH. PROGRESSION 3


The 1st term of an A.P. is 80 and the common difference is 27. Find the nth term.

Solution

A1= 80, d = 27

An = A1 + (n-1)d

An = 80 + (n-1)27

An = 80 + 27n – 27

An = 27n - 53



Hence the nth term is 27n - 53.



TRY THIS……………


The 1st term of an A.P. is 24 and the common difference is 34. Find the nth term.

LOGARITHMS 21

If log 2= 0.3010; find the value of log 1250 without using tables.

Solution

=log1250

=log(10,000 ÷8)

=log10,000 –log8

= log104 - log23

= 4log10 - 3log2

=(4 x 1) - (3 x 0.3010)

= 4  -  0.9030

=3.097

Hence log 1250 =3.097

TRY THIS……………


If log 2= 0.3010; find the value of log 2500 without using tables.

ALGEBRA 12


If 7x + 5y - 56 = 0; find x-intercept.

Solution

x-intercept is when y=0.

7x + 5y -56 = 0

7x + 5(0) - 56 = 0

7x - 56 = 0

7x = 0+ 56

7x = 56
7      7

x= 8

Hence x-intercept= 8

TRY THIS………..


If 8x - 7y - 40 = 0; find x-intercept.

Sunday, 16 July 2017

EXPONENTIALS 9


If 2(6m-7) x 3(n+8) = (344) x (265); Find m and n.

solution

equating equal bases;

2(6m-7) =  265

2(6m-7)265

6m - 7 = 65

6m  = 65 + 7

6m  = 72

16m  =  725
16         61

m =  12

again for n we equate equal bases.

3(n+8) = 344

3(n+8) = 344

n + 8 = 44

n = 44 - 8

n = 36

Hence m = 12 and n = 36


TRY THIS...............



If 8(2m-17) x 11(5n+40) = (1170) x (843); Find m and n.

GEOM. PROGRESSION 3


Find the sum of the 1st nine terms of the geometrical progression 3+6+12+24+…….

Solution

G1 = 3, r=2, n=9

Sn = G1(rn-1)/r-1
               
S9 = 3(29-1)/2-1
             
S9 = 3(29-1)/1
              
S9 = 3(29-1)

S9 = 3(512-1)

S9 = 3(511)

S9 = 1533


Hence the sum of the 1st nine terms is 1533.

TRY THIS.........................


Find the sum of the 1st seven terms of the geometrical progression 5+10+20+40+…….

ALGEBRA 11


48 + 24 =56
        a

Solution

48 + 24 =56
        a

   24  = 56 - 48
   a

   24  =  8
    a

1 a  x  24  =  8 x a
        1 a

24 = 8a

24  = 8a
8       8

3 = a

Hence a=3.

TRY THIS.........................

If 30 + 34 = 47; find m

           m

SETS 4


If n(A)= 85 , n(B)= 96 and n(AuB)= 130, find n(AnB).

Solution

n(AuB) = n(A) + n(B) - n(AnB)

130 = 85 + 96 - n(AnB)

130 = 181 - n(AnB)

130 - 181 = - n(AnB)

-51 = -n(AnB)

n(AnB) = 51 [after dividing by -1 both sides]

Hence n(AnB) = 51 answer

TRY THIS………….


If n(A)= 92 , n(B)= 95 and n(AuB)= 137, find n(AnB).

GEOM. PROGRESSION 2


The sum of the 1st five terms of a geometrical progression is 484. If the common ratio is 3 find the 4th term.

Solution

S5 = 484, G1 = ?, r=3, n=5, A4=?

We use the summation formula to find the 1st term.
Sn = G1(rn-1)/r-1
               

S5 = G1(r5-1)/r-1
               

484= G1(35-1)/3-1
               

484= G1(243-1)
                  2

2 x 484= G1(242)
                  
968= 242 G1

4 968   =  G1
  242

G1 = 4

Now we solve for the 4th term.

Gn = G1rn-1

G4 = G1r4-1

G4 = G1r3

G4 = 4 x (3 x 3 x 3)

     = 108


Hence the 4th term is 108.

TRY THIS.........................


The sum of the 1st five terms of a geometrical progression is 484. If the common ratio is 3 find the 7th term.

Friday, 14 July 2017

ALGEBRA 10


Expand 8w(5w + 3 - w)

Solution

= 8w(5w + 3 - w)

= (8w x 5w) + (8w x 3) - (8w x w)

= 40w2 + 24w - 8w2

= [40w2 - 8w2] + 24w collecting like terms

= 32w2 + 24w answer.

TRY THIS………..


Expand 4a(7a+ 12 - a)

GEOMETRY 1


If x-150 and 4x + 550 are complementary angles, find the value of x.

solution

Complementary angles add up to 900.

so,  x-150 + 4x + 550 = 900.
so,  x + 4x + 550 - 150 = 900.
so,  5x + 400 = 900.
so,  5x = 900 -  400
so,  5x = 500

so,  5x = 5010
     5       5

Hence x = 100

TRY THIS...............


If 3x - 230 and 2x + 980 are complementary angles, find the value of x.

EXPONENTIALS 8


If 52w (40000w) = 100 ; Find w.

Solution

52w (40000w) = 100

(52)w (40000w) = 100

(25)w (40000w) = 100

(25 x 40000)w = 100

(1000000)w = 100

(106)w = 102

106w = 102   (Bases are alike, so they cancel out)

6w = 2

6w = 2 1
6      6 3

w = 1/3 answer

TRY THIS…………………………….


NECTA 2004 QN. 4b


If 32t (4t) = 6 ; Find t.

LOGARITHMS 20


If log 2= 0.3010; find the value of log 16,000,000 without using tables.

solution

=log16,000,000

=log(16 x 1,000,000)

=log16 + log1,000,000

=log24 + log106

=4log2 + 6log10

=4(0.3010) + (6 x 1)

=1.2040+  6

=7.2040

Hence log 16,000,000  = 7.2040 answer

TRY THIS……………


If log 2= 0.3010; find the value of log 320,000,000 without using tables.   


MAKING THE SUBJECT 1


If D = y(c + a)    make a the subject of the formula.
            (c – a)

Solution
  
D = y(c+ a)   
        (c – a)

(c – a) x D = y(c + a) x (w – a) multiply by(w-a) on both sides.
                       (c – a)1

(c – a) x D = y(c + a)

Dc – Da = yc + ya     [open the brackets on both sides].

Dc – yc = Da + ya   [collecting the terms containing a together]

Dc – yc = a(D + y)      [factoring a out on RHS]

Dc – yc = a(D + y) 1               [Divide by (D + y) on both sides].
(D + y)         (D + y) 1

Dc – yc = a
(D + y)        

Hence  a =   Dc – yc
                       D + y       


TRY THIS…………

If B = w(h + m)    make m the subject of the formula.

            (h – m)

VARIATIONS 3


x is inversely proportional to y. x=12 while y=5. Find y when x is 15.

Solution

x k
      y

x = k
      y

12 = k
        5

k = 12 x 5

k = 60

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k = 60, y= ?, x = 15.

x = k
      y

15 = 60
         y

y x 15 = 60  x  y   (multiply by y on both sides)
                y
  
15y = 60          [Dividing by 15 both sides]  
15      15

y = 4 .


TRY THIS…………….


x is inversely proportional to y. x=20 while y=4. Find y when x is 16.


EXPONENTIALS 7


If 810 = 32a-2; find a

Solution

810 = 32a-2 

(23)10 = (25)a-2 

230 = 25(a-2) 

230 = 25a-10

230 = 25a-10      [Same bases both sides, cancel out]

30 = 5a – 10

30 + 10 = 5a

40 = 5a

40 = 5a
5      5

8 = a

Hence a=8

TRY THIS……………………….


If 47 = 64y-2; find y