Saturday, 26 November 2016

PERCENTAGE PROFIT 5


A man got a profit of 100/= after selling an item for 2500/=. Find the percentage profit.

Solution

%’ge profit = Profit   X  100    where B. P. represents Buying Price.
                        B.P

%’ge profit = 100   X  100   
                     2500

%’ge profit = 4%   
    
Hence Percentage Profit is 4%


TRY THIS…………………………..



A man got a profit of 200/= after selling an item for 3000/=. Find the percentage profit.

ARC LENGTH 2


Find the length of an arc if the radius of the circle is 40cm.

Solution

L = r
      1800

L = x  40
             1800

L = 2cm
       9

Hence length of an arc is 2/9 cm

TRY THIS…………………………..

 Find the length of an arc if the radius of the circle is 25cm.



SETS 1


If n(A)= 82 , n(B)= 100 and n(AnB)=20, find n(AuB).

Solution

n(AuB) = n(A) + n(B) - n(AnB)

             = 82 + 100 – 20

             = 182– 20

             = 162

Hence n(AuB) = 162 answer


TRY THIS………….



If n(A)= 115 , n(B)= 128 and n(AnB)=89, find n(AuB).

PRIME FACTORS 2


Using a factor tree give the prime factors of 60.

Solution



Hence the prime factors are 2  x  2  x  3  x  5

TRY THIS………….


Using a factor tree give the prime factors of 132.

FACTORIZING 10


Solve by Factorization 2x2 - 3x - 20

Solution

2x2 - 3x – 20=0  We split the middle term (-3x) to be (-8x + 5x).

2x2 - 8x + 5x – 20=0                (-3x) = -8x + 5x.

(2x2 -8x) + (5x - 20)=0

2x(x - 4) + 5(x - 4)=0

(2x + 5) (x -4) =0

2x + 5=0 or x -4=0

2x = -5  or  x = 4
2       2

x = -5/2  or  x = 4


Hence x= -5/2 or x=4 answer.


TRY THIS…..

 Solve by factorization; 2x2 - x – 28.

GEOMETRIC PROGRESSION 4


Find the sum of the 1st eight terms of the geometrical progression 2+6+18+54+…….

solution

G1 = 2, r=3, n=8

Sn = G1(rn-1)/r-1
               
S8 = 2(38-1)/3-1
             
S8 = 12(38-1)/21
              
S8 = (38-1)

S7 = 6561 – 1               [Since  38  =6561]

S7 = 6560

Hence the sum of the 1st seven terms is 6560.

TRY THIS………………



Find the sum of the 1st six terms of the geometrical progression 5+10+20+40+…..

SIMPLE INTEREST 4


Anjali deposited the amount of 13,000/= in a bank which gives an interest rate of 5% for 2 years. Find the simple interest she got?

Solution

I = ?,  P = 13,000/=, T = 2 years, R = 5%

I  = PRT
      100

I  = 13,000 x 5 x 2
            100

I  = 13000 x 5 x 2
            100

I  = 130 x 5 x 2
          
I  = 1300/=

Hence the simple interest was Tsh 1300/=

TRY THIS………………..



Chudasama deposited the amount of 90,000/= in a bank which gives an interest rate of 3% for 5 years. Find the simple interest she got?

LOGARITHMS 20


If logx3125 – log3729 = -1; find x

solution

logx3125 – log3729 = -1

logx3125 – log336 = -1

logx3125 – 6log33 = -1

logx3125 – 6 x 1 = -1

logx3125 – 6 = -1

logx3125 = -1 + 6

logx3125 = 5

3125 = x5

55 = x5      Powers cancel out

x = 5
  
Hence x = 5.

TRY THIS………….


If logk1024 – log7343 = 7; find k

UNITS OF DISTANCE 1


Change 73980m into Km.


Solution


1Km = 1000m
?  =  73980m


= 1  x  73980
       1000

=     73980
       1000

= 73.98Km


TRY THIS...................................




Change 78010m into Km.


COMPOUND INTEREST 2


Caroline invested a certain amount of money in a bank which gives an interest rate of 20% compounded annually. How much did she invest at the start if she got 8,500 sh at the end of 3 years?

Solution

n=3, t=1, R=20%, A3=8,500, P=?

An = P(1 + RT/100)n

A3 = P(1 + (20x1)/100)3

A3= P(1 + 20/100)3

A3 = P(100/100 + 20/100)3

A3 = P(120/100)3  But A3=8,500

8,500 = P(1.2)3  = P(1.2x1.2x1.2)  


8,500 = 1.728P

8500  =  1.728P
1.728      1.728

8500  =  P
1.728

P = 4919/=

Hence at the start she invested Tsh 4919


TRY THIS………………..



Tushabe invested a certain amount of money in a bank which gives an interest rate of 20% compounded annually. How much did she invest at the start if she got 18,000 sh at the end of 4 years?

Friday, 25 November 2016

UNITS OF WEIGHT 1


Change 23980g into Kg.

Solution

1Kg = 1000g
?  =  23980g


= 1  x  23980
       1000

=     23980
       1000

= 23.98Kg


TRY THIS...................................



Change 45080g into Kg.


LOGARITHMS 19


Evaluate    Log46 +  Log5000  -  Log23
                       
Solution

=    Log46 +  Log5000  -  Log23

= Log(46x5000)
                    23

= Log(1230000)
                    123


= Log1010000


= Log10104

= 4Log1010

= 4 x 1

= 4

Hence Log46 +  Log5000  -  Log23 = 4


TRY THIS………..


Evaluate  Log3400 +  Log600  -  Log0.204

PROBABILITY 12



A number is chosen at random from 1 – 15 inclusive. Find the probability that it is a multiple of seven or an even number.

Solution

THIS IS A NON-MUTUALLY EXCLUSIVE EVENT.

Let n(S) represent sample space
P(E) = probability of even number
P(M) = probability of a multiple of 7

n(S) = {1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15} = 15
n(E) = {2, 4, 6, 8, 10, 12, 14} = 7
n(M) = {7, 14 } = 2
But 14 appears on both categories.
P(E) = 7/15
P(M) = 2/15
P(EnM) = 1/15
………………………….
P(EuM) = P(E) + P(M) - P(EnM) 

P(EuM) = 7/15 + 2/15 -1/15

              = 8/15

              = 8/15

P(EuM) = 8/15

TRY THIS………………


A number is chosen at random from 4 – 30 inclusive. Find the probability that it is a multiple of 3 or an even number.


ALGEBRA 12


Simplify 60 - 18m + 12 + 5m

Solution

= 60 - 18m + 12 + 5m

= 60 + 12 + 5m - 18m  [Grouping like terms together]

= 72 - 13m   [since 5m - 18m  = -13m]


= 72 - 13m answer


TRY THIS...................................



Simplify 6 - 18m + 12 + 5m. 


WEEK AND DAYS 1


Change 875 days into weeks.

Answer

1 week = 7 days
?  =  875 days

= 875 x 1
      7

= 875
     7

= 125weeks

TRY THIS...................................


Change 1456 days into weeks.

BODMAS 2


Evaluate 90 + 50 x 30 – 80 ÷ 4

Solution

We apply BODMAS.

= 90 + 50 x 30 – 80 ÷ 4

= 90 + 50 x 30 – 20    [After dividing]

= 90 + 1500 – 20    [After multiplying]

= 1590 – 20    [After adding]

= 1570       [After subtracting]

Hence 90 + 50 x 30 – 80 ÷ 4 = 1570      

TRY THIS...................................


Evaluate 90 + 50 x 30 – 80 ÷ 4

SIMULTANEOUS EQN 1


Solve the following equations by substitution method.
x + y = 10
2x + y = 16

Solution

x + y = 10 ----------- (i)
2x + y = 16 ---------- (ii)

from equation (i)

x + y = 10
x = 10 – y ----------(iii)

substitute equation (iii) in (ii) above,

2(10 – y) + y = 16

20–2y  + y = 16  

20 – y = 16           [since –2y+y = -y]

20 –16 = y   

4 = y          
      
So; y = 4


From equation (iii)

x = 10 – 4 ----------(iii)
x = 6

Hence x=6 and y=4.


TRY THIS………………………..

Solve the following equations by substitution method.

5x – y = 11
x  +  y = 7


Answer: x=3;   y=4


FACTORIZING 9


Factorize 9-w2

Solution

We use difference of two squares a2 – b2 = (a - b)(a + b)

9-w2 = 32-w2       

        = (3 - w)(3 + w)

Hence 9-w2 = (3 - w)(3 + w)

TRY THIS…………….



Factorize 49 - c2

INEQUALITIES 4


If 11x + 8 7 + 3x 9x – 13; find x

Solution

11x + 8 7 + 3x and  7 + 3x 9x - 13

11x – 3x 7 - 8 and  7 +13 9x - 3x

8x  -1 and  20 6x

8x  -1  and  20 6x
8       8          6       6

x  -1/8 and  10/3 x

x  -1/8 and  x  ≥ 10/3

TRY THIS…………….
  

If 14x + 8 7 + 5x 11x – 20; find x


PRIME FACTORS 1


Using a factor tree give the prime factors of 48.

Solution




Hence the prime factors of 48 are 2  x  2  x  2  x  2  x  3

TRY THIS………….


 Using a factor tree give the prime factors of 68.


Thursday, 24 November 2016

APPROXIMATIONS 4


Estimate the value of 1143  ÷ 52.

Solution

= 1123     
     52

= 1000      [ since 1143 ≈ 1000   and   52 ≈ 50 ]
     50

= 20    [After dividing 1000 by 20]

TRY THIS...................................



Estimate the value of 7312  ÷ 18

PERIMETER 2


Area of rectangle is 60m2. Find its perimeter if width is 4m. 

Solution

A = L x w

60 = L x 4

60 = 4L
4      4

15 = L

Now; P =2(L + w)

= 2(15 + 4)

= 2 x 19

= 38m

Hence perimeter is 38m

TRY THIS………..

Area of rectangle is 85m2. Find its perimeter if width is 5m. 


UNITS OF VOLUME 1


Change 4.5 liters of water into milliliters

Solution

1L  =  1000mL
4.5L = ?
___________________________  

 = 4.5 x  1000
         1

= 4.5 x 1000

4500mL.


TRY THIS...................................


Change 6.3 liters of milk into milliliters 

ALGEBRA 11


Simplify 6n + 18m + 2n – 5m

Solution

= 6n + 18m + 2n – 5m

= 6n + 2n + 18m– 5m         [Grouping like terms together]

= 8n + 13m answer


TRY THIS...................................



Simplify 6n + 18m + 2n – 5m

LOGARITHMS 18


Evaluate       Log0.0000001
                       
Solution

=    Log0.0000001
      
We write 0.0000001 as an exponent. So 0.0000001=10-7

=    Log10-7
      
=    Log1010-7
            
=    -7Log1010       [Since Logccn = nLogcc]
      
=    -7 x 1             [Since Logcc = 1]


Hence           Log0.0000001         =  -7

TRY THIS………..

Evaluate    Log0.0000000001


APPROXIMATIONS 3


Estimate the value of 6.3  x  0.064

solution

= 6.3  x  0.064

= 6.0 x 0.06      [ 6.3 ≈ 6.0 to ones and 0.064 ≈ 0.06 to hundredths]

= 0.36

TRY THIS...................................




Estimate the value of 4.2  x  0.078

PROBABILITY 13



A certain man takes 2 cards from a standard deck of 52 cards.
What will be the probability of getting a spade and an ace?

Solution

(This is a problem with replacement)

n(E) = 13, n(S) = 52

P(E) = n(E)
            n(S)

1st pick(spade) = 13/52
2nd pick(an ace) = 4/52.


P(a spade and an ace) =   13      x    4
                                         52           52

P(a spade and an ace) =  113      x    4 1
                                        452           52 13


P(a spade and an ace) =      x    1
                                        4           13


P(a spade and an ace) =     1      
                                         52     


Therefore Probability of drawing a spade and an ace is 1/52 



TRY THIS............

A certain man takes 2 cards from a standard deck of 52 cards.

What will be the probability of getting a number 2 and a joker?


VARIATION 5



x is inversely proportional to y. x=18 while y=5. Find y when x is 12.

Solution

x k
      y

x = k
      y

18 = k
        5

k = 18 x 5

k = 90

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k = 90, y= ?, x = 12.

x = k
      y

12 = 90
         y

y x 12 = 90  x  y   (multiply by y on both sides)
                y


12y = 90
12      12

y = 7.5  .


TRY THIS…………….


x is inversely proportional to y. x=24 while y=4. Find y when x is 8.

EXPONENTIALS 10


Simplify the following by writing in power form:
 4w70
  w20

Solution

= 4w70 - 20 

= 4w50

TRY THIS……………….

Simplify the following by writing in power form:
m50

   m30    


BODMAS 1


Evaluate 18 x (45 – 41) ÷ (101-99)

Solution

We apply BODMAS.

= 18 x (45 – 41) ÷ (101-99)

= 18 x 4 ÷ (101-99)     [After dealing with 1st brackets]

= 18 x 4 ÷ 2     [After dealing with 2nd brackets]

= 18 x  2     [After dividing]

= 36     [After multiplying]

Hence  18 x (45 – 41) ÷ (101-99) = 36


TRY THIS……………….



Evaluate 8 x (56 – 42) ÷ (88-86)