Wednesday, 28 February 2018

LOGARITHMS 16


If Log(30x-90/5+x) = 1. Find x.

Solution

Log(30x-90/5+x) = 1.

Log10(30x-90/5+x) = 1.
 30x-90 = 101. After changing into exponential form
   5+x

30x-90 = 10    since [101=10]
   5+x

30x-90 = 10(5+x)    after cross multiply
  
30x-90 = 50+10x

30x-10x = 50+90 [collecting like terms]

20x = 140

x=7  [after dividing by 20 both sides]
Hence x=7.
TRY THIS……………

Log(30x-120/3+x) = 1.

FACTORIZE 3


Factorize 25 – (x-3)²

Solution

= 25 – (x-3)²

= 52 – (x-3)²   Let a=5 and b=(x-3)

= [5 - (x-3)][5 + (x-3)]     Since a2-b2=(a-b)(a+b)

= [5 – x+3][5 + x-3]  

= [5+3 – x][5 – 3 + x]   
 
= [8 – x][2 + x] 
   
= (8 – x)(2 + x) answer   

TRY THIS…………….. 


Factorise 81 – (x-2)²

PROBABILITY 1


The probability that Azam FC will beat Yanga in the national league is 9/16. Find the probability that it won’t be able to do so.
Solution

Let P(E)=  9/16         P(E’) = ?

P(E)   + P(E’) = 1

9/16 + P(E’) = 1

P(E’) = 1 -  9/16

P(E’) = 16/16 -  9/16


P(E’) =  16-9
               16

P (E’) =  7
              11

Hence answer is 7/11.


TRY THIS………………………



The probability that Mtibwa FC will beat Mbeya City FC in the national league is 13/40. Find the probability that it won’t be able to do so.

POLYGONS 2


Find the exterior angle of a regular polygon with 6 sides.

Solution

n = 6

e =   360
         n

e =   360
         6

e =   360 60
        61

e = 600

Hence the interior angle is 600

TRY THIS………………………………………..



Find the exterior angle of a regular polygon with 20 sides.

FACTORIZE 2


Factorize 25m2n2 - c2

Solution

We use difference of two squares a2 – b2 = (a - b)(a + b)

=25m2n2 - c2

= 52m2n2 - c2

= (5mn)2 - (c)2

= (5mn - c)( 5mn + c)

Hence 25m2n2 - c2 = (5mn - c)( 5mn + c) answer

TRY THIS…………….



Factorize 64a2d2 - e2

EXPAND 1


Expand (7x + 3)(x - 2)

Solution

= (7x + 3)(x - 2)

= x(7x + 3)-2(7x + 3)

 = 7x² + 3x - 14x - 6

 = 7x² - 11x – 6 

TRY THIS………………


Expand (8x + 5)(x - 3)

FUNCTIONS 6


Find remainder when P(x) = x5 + 3x3 – x +6  is divided by Q(x)=x+2;

Solution

Let x+2 = 0

x=0-2

x = -2 

Now we substitute x=-2 in P(x).

P(x) = x5 + 3x3 – x +6 
P(-2) = (-2)5 + (-2)3 – (-2) +6 
P(-2) = -32 + (-8) – (-2) +6 
P(-2) = -32 + (-8) + 2 + 6  
P(-2) = -40 + 8 
P(-2) = -32

So remainder is -32

TRY THIS……………


Find remainder when P(x) = x5 - 2x3 – x + 9  is divided by Q(x)=x-3;

EVALUATE 1


Evaluate  90 + 6 – 5 – 7 – 9 + 15.

Solution

= 90 + 6 – 5 – 7 – 9 + 15

= 90 + 6 + 15 – 5 – 7 – 9

= 90 + 6 + 15 – ( 5 + 7 + 9)

= 111 – 21

= 90

TRY THIS………



Evaluate  75 + 11 – 17 – 9 – 13 + 15

EXPONENTIALS 3



Simplify 300
               64-2/3

Solution

300
      64-2/3

=  300 x 1
             64-2/3

=  300 x 642/3        [Since 1/a-n = an]

=  300 x (641/3)2        [Since 641/3 = cube root of 64 = 4]

=  300 x (4)2        

=  300 x 16

= 4800        
         
Hence   300       = 4800
              64-2/3

TRY THIS…………………………

simplify 11
             27-2/3

INEQUALITIES 1


Find x if 5x – 29 x + 15 6x.

Solution

5x – 29 x + 15 and  x + 15 6x

5x – x 29+ 15 and  15 6x - x

4x 44 (divide by 4 both sides) and  15 5x (divide by 5 both sides)

x 11 and  3 x

x 11 and  x 3 answer

TRY THIS……..



Find x if 6x – 55 x + 15 2x. 


LOGARITHMS 15


Evaluate Log100 +  log 0.001 - log 0.0001+ log 0.00001

Solution

= Log100 + log 0.001 -  log 0.0001+ log 0.00001

= Log102 +  log 10-3 – log 10-4 + log 10-5

= 2Log10 + (-3 log 10) – (-4log 10) + (-5log 10)

= (2x1) + (-3x1) - (-8x1) + (-5 x 1)

= 2 + (-3) – (-4) -5

= 2 - 3 + 4 - 5

= 2 + 4 - 3 - 5

= 6 - 8

= 2  

Hence Log100 + log 0.001-  log 0.0001+ log 0.00001 = 2


TRY THIS……………………… 


Evaluate Log100 +  log 100,000 - log 0.0001+ log 0.00001

Tuesday, 27 February 2018

WORD PROBLEMS 3


The difference between two numbers is 21 and their sum is 683. Find the two numbers.

Solution

Let the two numbers be x and y.

x – y = 21 ----------- (i)
x +y = 683 ------------(ii)
---------------------------------------------

From (i)
 x – y = 21
x = 21+ y -------------- (iii)
-------------------------------------------
Substitute (iii) in (ii) above.
x +y = 683. ------------(ii)
(21+ y) +y = 683
21 + 2y = 683
2y = 683 - 21
2y = 662
12y = 662331
12      21

y = 331

from (iii)

x = 21+ y

x = 21+ 331

x = 352

Hence the two numbers are 331 and 352.

TRY THIS…………………………………   


The difference between two numbers is 33 and their sum is 167. Find the two numbers.

WORD PROBLEMS 2


When 7 is subtracted from twice a certain number, the result is greater than 93. Find the number.

Solution

Let the number be w.

2w – 7 > 93

2w > 93 + 7

2w > 100

2w > 100
2        2

w > 50 answer

TRY THIS…………………………… 


When 30 is subtracted from thrice a certain number, the result is greater than 76. Find the number.

RATIOS 1


Decrease 87000sh by 3:10.

Solution

= 3 x 87000sh
   10

= 3 x 870008700
   101

= 3 x 8700

= 26,100Tshs answer

TRY THIS………………………………………… 


Decrease 28,000sh by 7:20.

SIMPLIFY 4


Simplify 20 + 6(100n ÷ n/2) - 80

Solution

=20 + 6(100n ÷ n/2) - 80

=20 + 6(100n x 2/n) – 80

=20 + 6(100n1 x 2/n1) – 80  cancelling n

=20 + 6(100 x  2) – 80 

=20 + 6(200) – 80 

=20 + 1200 – 80 

=1220 – 80 

=1140

=1140answer

TRY THIS……..


Simplify 70 + 4(10n ÷ n/5) - 35

WORD PROBLEMS 1



Ana, Joy and Fred shared 2400 sweets such that Ana got 50 sweets less than Joy while Fred got three as much as what Ana got. Find those given to Fred.

Solution

The starting point is Joy. Let the sweets given to Joy be x. See the table below:

ANA
JOY
FRED
x-50
x
3(x-50)=3x-150
  
Then;
ANA + JOY + FRED = 2400
x-50 + x + 3x-150 =2400
x + x + 3x - 150 - 50 = 2400
5x - 200 = 2400
5x = 2400 + 200
5x = 2600
5x = 2600
5       5

x = 520

The sweets given to Fred

= 3x – 150

= 3(520) – 150

= 1560 – 150

=1410

Hence Fred got 1410 sweets.


TRY THIS……………………………………… 

Kemi, Roy and Isaya shared 246 sweets such that Kemi got 10 sweets less than Roy while Isaya got four as much as what Kemi got. Find those given to Isaya.   [132 answer]

FUNCTIONS 5


If F(x) = 4x + 13; Find F-1(x).

Solution

HINT: F-1(x) means inverse.

PROCEDURE:
Make x the subject and then interchange x and y variables.

Let y=F(x)

So,  y= 4x + 13

y – 13 = 4x

y – 13  = 4x
   4          4

y – 13   = x
   4

x  =   y – 13     after rearranging
           4


F-1(x) = x – 13    after interchanging x and y variables.
                4

Hence, F-1(x) = x – 13     
                              4


TRY THIS………………   

If F(x) = 7x + 20; Find F-1(x).

SIMPLIFY 3


Simplify  8w(5w – 7 + w) + 12w2.

solution

= 8w(5w – 7 + w) + 12w2.

= (8w x 5w) – (8w x 7) + (8w x w) + 12w2.

= [40w2 – 56w + 8w2 ]+ 12w2.

= 40w2 + 8w2 + 12w2 – 56w

= (48w2 + 12w2)  – 56w

= 60w2 – 56w

= 60w2 – 56w answer


TRY THIS………..



Simplify 3a(7a+ 30 - a) +29a2.

Monday, 26 February 2018

FACTORIZE 1


Factorize 81 - 225m2

Solution

We use difference of two squares a2 – b2 = (a - b)(a + b)

81 - 225m2 = 92 - 152m2       

                = 92 – (15m)2       

                = (9 - 15m)(9 + 15m)

Hence 81 - 225m2 = (9 - 15m)(9 + 15m) answer


TRY THIS…………….



Factorize 49 – 121y2