Sunday, 2 April 2017

LOGARITHMS 9


If logx3125 – log381 = 1; find x

solution

logx3125 – log381 = 1

logx3125 – log334 = 1

logx3125 – 4log33 = 1

logx3125 – 4 x 1 = 1

logx3125 – 4 = 1

logx3125 = 1 + 4

logx3125 = 5

3125 = x5

55 = x5      Powers cancel out

x = 5


Hence x = 5.

TRY THIS………….


If loga1024 – log7343 = 7; find a


No comments:

Post a Comment