Wednesday, 31 May 2023

GEOMETRY J1

 

An interior angle of a regular polygon is 760 greater than an exterior angle. Find the interior angle.

 

Solution

 

Let i = interior angle, e = exterior angle.

 

Now i  + e=1800…………………(1)

 

But i = e+760 …………………(2)

 

Substitute (2) in (1) above.

 

e+760   + e=1800

 

e+ e+760   =1800

 

2e+ 760   =1800

 

2e=1800 - 760   

 

2e=1040

 

2e=1040          dividing by 2 both sides.

2     2

 

e = 520

 

From (1),

 

i  + e=1800

 

i  + 520=1800

 

i  =1800 - 520

 

i  =1280 answer

 

Hence interior angle is 1280

 

TRY THIS………………………   

 

An interior angle of a regular polygon is 480 greater than an exterior angle. Find the interior angle.



FACTORIZE J3

 

Factorize 225 - m2

 

Solution

 

We use difference of two squares a2 – b2 = (a - b)(a + b)

 

225-m2 = 152-m2       

 

          = (15 - m)(15 + m)

 

Hence 225 - m2 = (15 - m)(15 + m)

 

 

TRY THIS…………….

 

 

Factorize 121 - H2



ALGEBRA J1

 

If  x+6y = 1            find  x/y             

    2x-3y   4

 

solution

 

x+6y =  1           

2x-3y   4

 

1(2x-3y) = 4(x+6y)           [after cross multiplying]

 

2x-3y = 4x+24y

 

2x - 4x = 3y + 24y   (Collecting like terms)

 

-2x = 27y

 

1-2x =   27y                (dividing by -2 both sides)       

1-2       -2  

 

 x = -13.5y             

     

x = -13.5                (dividing by y both sides)       

y          y

 

x = -13.5

y    

 

Hence x/y = -13.5  answer.          

 

TRY THIS......................

 

If   x+8y = 1            find  x/y             

    x- 6y     9




LOGARITHMS J2

 

Evaluate Log10000 -  log 0.001 - log 0.0001+ log 0.00001

 

Solution

 

= Log10000 -  log 0.001 -  log 0.0001+ log 0.00001

 

= Log104 -  log 10-3 – log 10-4 + log 10-5

 

= 4Log10 - (-3 log 10) – (-4log 10) + (-5log 10)

 

= (4x1) - (-3x1) - (-8x1) + (-5 x 1)

 

= 4 - (-3) – (-4) -5

 

= 4 + 3 + 4 - 5

 

= 11 – 5

 

= 6 ans.

 

  

Hence Log10000 -  log 0.001-  log 0.0001+ log 0.00001 = 6

 

 

TRY THIS……………………… 

 

 

Evaluate Log1000 -  log 0.001 - log 0.00000001+ log 0.00001







MIDPOINT J1

 

Find the midpoint of a line from (33, 12) to (5, 20)

 

Solution

 

x1=33, x2=5, y1=12,y2=20.

 

Mid point = (x1 + x2, y1 + y2)

                          2             2

 

Mid point = (33 + 512 + 20)

                         2          2

 

Mid point = (38, 32)

                     2     2

 

Hence midpoint = (19, 16)

 


TRY THIS……………………..

 

 

Find the midpoint of a line from (-9, 24) to (9, -4)



FACTORIZE J2

 

Evaluate using factors: 9962 – 9862

 

Solution

 

We apply difference of two squares: a2 - b2 = (a+b)(a-b)

 

9962 – 986= (996 + 986)( 996 – 986)

 

                   = (1982)( 10)

 

                   = 19820   [only add a zero at 1982]

 

9962 – 9862 = 19820

 

TRY THIS…………….

 

Evaluate using factors: 7082 – 6082


VARIATION J1

 

x is directly proportional to y. x=32 while y=4. Find y when x is 816.

 

Solution

 

x y

x = ky

 

32 = k x 4

 

32 = 4k    [dividing by 4 both sides]

4      4

 

k = 8

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 

k = 8, y= ? x = 816.

 

x = ky

 

816 = 8 x y

 

816 = 8y

8        8

 

y = 104.

 

TRY THIS…………….

 

x is directly proportional to y. x=40 while y=4. Find y when x is 370.



LOG J1

 

If log 2= 0.3010; find the value of log 1600000 without using tables.

 

solution

 

=log1600000

 

=log(16 x 100,000)

 

=log16 + log100,000

 

=log24 + log105

 

=4log2 + 5log10

 

=4(0.3010) + (5 x 1)  [since log10=1 and Log3=0.3010]

 

=(0.6020) +  5

 

=5.6020

 

Hence log1600,000=5.6020 answer.

 

 

TRY THIS……………

 

 

If log 2= 0.3010; find the value of log 40,000,000 without using tables.

 



FACTORIZE J1

 

Factorize completely tc + tr - cr - c2.  

 

Solution

 

= tc + tr - cr - c2.

 

= (tc + tr) – (cr - c2).      [Grouping the factors]

 

= t(c + r) - c(r + c).   [after factoring out]

 

 = (c + r)(t - c) answer

 

  Hence tc + tr - cr - c2. =  (c + r)(t - c).   

 

TRY THIS..................

 

Factorize completely yw + yr - rw - w2






SETS J1

 If n(A)= 85 , n(B)= 96 and n(AuB)= 129, find n(AnB).

 

Solution

 

n(AuB) = n(A) + n(B) - n(AnB)

 

129 = 85 + 96 - n(AnB)

 

129 = 181 - n(AnB)

 

129 - 181 = - n(AnB)

 

-58 = -n(AnB)

 

n(AnB) = 58 [after dividing by -1 both sides]

 

Hence n(AnB) = 58 answer

 

 

TRY THIS………….

 

 

If n(A)= 91 , n(B)= 94 and n(AuB)= 127, find n(AnB).

Thursday, 11 May 2023

G.PROGRESSION J1

 The 1st term of a geometric progression is 7 and the 5th term is 112. Find i)the common ratio. ii) 12th term

 

Solution

 

G1=7, G5=112, n=5

 

i) Gn = G1rn-1;

 

G5 = G1r5-1;

 

G5 = G1r4;

 

112 = 7 x r4;

 

112 = 7r4;

 7       7

 

16 = r4;  Finding the fourth root of 16,

 

r = 2

 

 

 

Hence the common ratio is 2.

 

ii)  12th term

 

Gn = G1rn-1;

 

G12 = G1r12-1;

 

G12 = G1r11;

 

G12 = 7 x 211;

 

G12 = 7 x 2048;

 

G12 = 14336

 

Hence the 12th term is 14336

 

TRY THIS………………………….. 

 

The 1st term of a geometric progression is 2 and the 6th term is 486. Find i) the common ratio. ii) 10th term