When mx3+nx2-18x-45
is divided by x2-9 the remainder is zero. Calculate the values of m
and n.
solution
x2-9
= 0
(x)2-(3)2=0
(x+3)(x-3) =
0
x+3= 0 OR x-3
= 0
x= 3 OR x=
-3
When x=3,
m(3)3+n(3)2-18(3)-45=0
27m + 9n -54
-45 = 0
27m + 9n -99
= 0
27m + 9n = 99
…………………..(1)
When x=-3,
m(-3)3+n(-3)2-18(-3)-45=0
-27m + 9n + 54
- 45 = 0
-27m + 9n + 9
= 0
-27m + 9n = -9
………………………………(2)
Solving 1
and 2 simultaneously,
27m + 9n = 99 …………………..(1)
-27m + 9n = -9 ………………..……(2)
By using
elimination method,
27m +
9n = 99
- (-27m) + 9n = -9
54m + 0 = 108
54m = 108
54 54
m = 2
from equation (1),
27(2) + 9n = 99
54 + 9n = 99
9n = 99 - 54
9n = 45
9n = 45
9 9
n=5
Hence m=2 and n=5.
No comments:
Post a Comment