Friday, 21 June 2024

ARITHMETIC PROGRESSION 1F

 

The 1st term of an A.P. is 10 and the common difference is 58. Find the 16th term.

 

Solution

 

A1= 10, d = 58

 

An = A1 + (n-1)d   [ formula for n terms ]

 

A16 = A1 + (16-1)d

 

A16 = A1 + 15d    [ formula for 16 terms ]

 

A16 = 10 + (16 x 58)

 

A16 = 10 + 928

 

A16 = 938

 

 

Hence the 16th term is 938.

 

TRY THIS……………..

 

 

The 1st term of an A.P. is 23 and the common difference is 58. Find the 22nd term.


FUNCTIONS 3G

 

Given that F(x) = 13x  -  55. Find F(8)

 

Solution

 

F(x) = 13x  - 55

 

F(8) = 13(8)  -  55

 

F(8) = 104  -  55

 

F(8) = 49

 

 

Hence  F(8) = 49

 

TRY THIS……………..

 

Given that F(x) = 55x  -  20. Find F(3)


SETS H21

 

In Ntoma district the number of people who speak Kiswahili or Lingala is 410. 200 of them speak Kiswahili and 320 of them speak Lingala. How many speak both languages?

 

solution

 

In most cases, OR stands for union whereas AND/BOTH, stands for intersection.

 

Let Kiswahili=n(K), Lingala= n(L).

 

n(K)= 200 ,

n(L)= 320,

n(KuL) = 410,

n(KnL)=?

 

 

 

n(KuL) = n(K) + n(L) - n(KnL)

 

 

410  =  200 + 320 – n(KnL)

 

 

410  =  520 – n(KnL)

 

 

n(KnL) =  520 – 410

 

 

n(KnL) =  110

 

Hence n(KnL)=110 answer

 

TRY THIS……………..

In Bibanja district the number of people who speak Spanish or German is 210. 170 of them speak Spanish and 180 of them speak German. How many speak both languages?


SLOPE OR GRADIENT 1E

 

Find the slope of a line which passes through (-15, -2) and (6,-9)

 

Solution

 

x= -15,  y=-2,  x= 6,  y= -9

 

m = y2 –y1

       x2 – x1

 

m =   -9 –(-2)

           6 –(-15)

 

m =   -9 + 2

           6 + 15

 

m =    - 7

           21

 

 

Hence the slope is -7/21

 

TRY THIS……………..

 Find the slope of a line which passes through (-15, -6) and (1,-9)

Tuesday, 18 June 2024

RADICALS 1E


SEE MORE FORM II VIDEOS HERE:

FORM II VIDEOS


 

INEQUALITIES 1E

 

Solve for x if 2x – 1 ≤ x + 50 ≤ 6x.

 

solution

 

2x – 1 ≤ x + 50 and  x + 50 ≤ 6x

 

2x – x ≤ 1+ 50 and  50 ≤ 6x - x

 

x ≤ 51 and  50 ≤ 5x (having divided by 5 both sides)

 

x ≤ 6 and  10 ≤ x

 

 

x ≤ 6 and  x ≥ 10 

 

TRY THIS………………….

 

Solve for x if 2x – 8 ≤ x + 40 ≤ 11x

ARITHMETIC PROGRESSION 1E

 

The first term of an AP is 5 and the last term is 67.If the arithmetic progression consists of 20 terms, calculate the sum of all the terms. 

 

Solution

 

A1 = 5, n=20, An = 67

 

Sn = n(A1 + An)

       2

 

S20 = 20(5 + 67)

         2

 

S20 = 10 x 72

 

 

S20 = 720

 

 

 

Hence the sum of all 20 terms is 720.

 

TRY THIS………………….

 

The first term of an AP is 7 and the last term is 75. If the arithmetic progression consists of 24 terms, calculate the sum of all the terms


SIMPLE INTEREST 1F

 

Dikshi deposited the amount of 90,000/= in a bank which gives an interest rate of 3% for 2 years. Find the simple interest she got.

 

Solution

 

I = ?,  P = 90,000/=, T = 2 years, R = 3%

 

I  = PRT

      100

 

I  = 90000 x 3 x 2

            100

 

I  = 90000 x 3 x 2

            100

 

I  = 900 x 3 x 2

          

I  = 5400/=

 

Hence the simple interest was Tsh 5400/=

 

TRY THIS………………….

 

Edmund deposited the amount of 40,000/= in a bank which gives an interest rate of 6% for 5 years. What was her simple interest?

Thursday, 13 June 2024

FORM ONE MATHS

 




Fuatilia video nyingine zaidi kupitia link hii hapa chini:

FORM ONE MATH VIDEOS



SETS H20

 

 If n(A)= 85 , n(B)= 96 and n(AuB)= 119, find n(AnB).

 

Solution

 

n(AuB) = n(A) + n(B) - n(AnB)

 

119 = 85 + 96 - n(AnB)

 

119 = 181 - n(AnB)

 

119 - 181 = - n(AnB)

 

-62 = -n(AnB)

 

n(AnB) = 62 [after dividing by -1 both sides]

 

Hence n(AnB) = 62 answer

 

 

TRY THIS………….

 

 

If n(A)= 91 , n(B)= 95 and n(AuB)= 127, find n(AnB).


SIMPLIFY D2A

 

Simplify the expression c2 - t2/ (c + t)

 

Solution

 

from difference of two squares p2 - q2 = (p - q)(p + q)

 

= c2 - t2/ (c + t)

 

(c + t)(c - t)

      c + t

 

(c + t)(c - t)

      c + t

 

=  c - t    answer

      

TRY THIS.........................

 

 

Simplify the expression 

 

u2 - y2/ (u + y)


SIMPLE INTEREST 1E

 

Rayan deposited the amount of 8,000/= in a bank for 5 years and got a profit of 2800/=. Find the interest rate?

 

Solution

 

I = 2800/=, P = 8,000/=, T = 5 years, R = ?

 

I  = PRT

      100

 

Where P=Principal amount

            I = simple Interest

           T= Time

           R=Rate

 

2800  = 8,000 x R x 5

                      100

 

 

2800  = 8,000 x R x 5

                      100

 

2800  = 80 x R x 5

                      

2800  = 400R

          

72800  = 400R

  400       400

 

Hence the interest rate was Tsh 7%

 

 

TRY THIS……………….

 

 

Kibonde deposited the amount of 15,000/= in a bank for 4 years and got a profit of 3000/=. Find the interest rate?

 


EXPAND 3C

Expand 8w(5w + 7 – w2)

 

Solution

 

= 8w(5w + 7 – w2)

 

= (8w x 5w) + (8w x 7) - (8w x w2)

 

= 40w2 + 56w - 8w3 answer