Thursday, 7 September 2017

LOGARITHMS 3


If Log3(x2+7x+7)=0; find x.

Solution

Log3(x2+7x+7)=0

 (x2+7x+7)=30

x2+7x+7=1    [ Since n0=1 ]

x2+7x+7-1=0

x2+7x+6=0

We solve it by factorization;

x2+7x+6=0

x2+6x + x+6=0

x(x+6) + 1(x+6)=0

(x+6)(x+1)=0

x+6=0 OR x+1=0

x= -6 OR x= -1 answer

TRY THIS………………….


If Log7(x2 + 17x + 101)=2; find x.

No comments:

Post a Comment