If A = HQR

^{ }make R the subject of the formula.
Solution

A = HQR

__A__

__=__

__HQ__

__R__

HQ ~~HQ~~

__A__

__= R__

HQ

Hence R
=

__A__
HQ

__TRY THIS………………………..__
If K = HDG

^{ }make G the subject of the formula.
If A = HQR^{ }make R the subject of the formula.

Solution

A = HQR

HQ ~~HQ~~

HQ

Hence R
= __ A __

HQ

If K = HDG^{ }make G the subject of the formula.

Evaluate Log_{2}(2048
x 16).

= Log_{2}(2048
x 16)

= Log_{2}2048
+ Log_{2}16
(applying the product rule)

= Log_{2}2^{11} + Log_{2}2^{4 }^{ } (2048=
2^{11} and 16=2^{4} )

= 11Log_{2}2
+ 4Log_{2}2 ( remember
Log_{a}a^{c}^{ }= cLog_{a}a )

= (11 x 1) + (4
x 1) ( remember Log_{a}a^{ }= 1 )

= 11 + 4

= 15

Evaluate Log_{2}(32
x 256).

Factorize 2x

= 2x^{2} - x – 15. We split the middle term (-x)
to be (-6x + 5x).

= 2x^{2} - 6x + 5x – 15
(-x)
= -6x + 5x.

= (2x^{2} -6x) + (5x - 15)

= 2x(x - 3) + 5(x - 3)

= (2x + 5) (x -3)

Factorize 3x^{2} - 8x – 35.

Find the midpoint of a
line from (19, 4) to (5, 10)

x1=19, x2=5, y1=4,
y2=10.

Mid point = (__x1 +
x2__, __y1 + y2__)

2
2

Mid point = (1__9 + 5__,
__4 + 10__)

2 2

Mid point = (__24__, __14__)

2 2

Hence midpoint = (12,
7)

Find the midpoint of a
line from (18, -8) to (-6, 12)

Subscribe to:
Posts (Atom)